

PHENIX Small System Summary

Maya SHIMOMURA for the PHENIX Collaboration
Nara Women's University

THE PHENIX EXPERIMENT

- Data taking is completed in 2016.
- Collaboration is actively working for data analysis
- Data with 9 collision species and 9 collision energies have been obtained.

Time evolution

The matter produced in the high energy heavy ion collision is expected to undergo several stages from the initial hard scattering to the final hadron emission.

Need a comprehensive understanding from initial hard scattering to final freeze out.

R_{AA} for hadrons & γ in Au + Au

$$R_{AA} = \frac{yield(AuAu)}{N_{coll} \cdot yield(pp)}$$

- γ is not \rightarrow no interaction with QGP.
- pQCD calculations agree well to data in p+p.

Contents

Focus on Small systems

- $-\pi^0$ R_{xA} in pAl, pAu and 3 HeAu
- π^0 and γ R_{dAu} for experimental N_{coll}
- -φ and π^0 R_{AB}
- J/ψ , $\psi(2S)R_{AB}$
- $-v_2$ and v_3 with 3x2PC

π^0 R_{xA} in pAl, pAu, dAu and ³HeAu

KT broadening? Why this order? -some bias?

At low p_T at 0-20 %

- $-R_{vA} > \sim 1$
- Target difference (Al/Au): p+Al < p+Au
- Projectile difference (p/d/3He): 3 He+Au < d+Au < p+Au
- The peak shifts to more right with the larger system.

π^0 R_{xA} in pAl, pAu, dAu and ³HeAu

KT broadening? Why this order? -some bias?

Radial flow effect?

At low p_T at 0-20 %

- $-R_{xA} > 1$
- Target difference (Al/Au): p+Al < p+Au
- Projectile difference (p/d/³He):
 ³He+Au < d+Au < p+Au
- The peak shifts to more right with the larger system.

PRC 105, 064902

π^0 R_{xA} in pAl, pAu, dAu and ³HeAu

At high p_T ($p_T > 10 \text{ GeV/c}$)

- R_{xA} < 1 at central
- $R_{xA} \sim 1$ at mid central
- $R_{xA} > 1$ at peripheral

Central collision events with high p_T particles may incorrectly categorized as peripheral events due to energy conservation. → Corrected

Suppression is observed at very high p_T at central collisions for small systems.

- → Energy loss?
- → MC-Glauber Ncoll is really OK for peripheral ??

π^0 and γ R_{dAu} with MC-Glauber N_{coll}

There seems to be some bias on MC-Glauber Ncoll calculation at peripheral.

Even γ R_{dAu} shows the enhancement at most peripheral, amount of that matches that of π^0 R_{dAu} .

 \rightarrow Introduce experimentally determined N_{coll}

$$\langle N_{coll}^{exp}
angle = rac{(rac{d^2N^\gamma}{dp_Td\eta})_{dAu}}{(rac{d^2N^\gamma}{dp_Td\eta})_{pp}}$$

π^0 R_{dAu} with experimental N_{coll}

- After the correction, π^0 R_{dAu} with p_T integrated [7.5-17 GeV/c] is less than 1 for all measured centralities.
- It shows suppression in central collisions clearly. → QGP-like matter?

ϕ R_{xA} in p+Al, p+Au, d+Au and ³He+Au

^{*}The normalization uncertainty from p+p is about 9.7%.

At MB

- R_{xA} are ~1 within large uncertainties.

At 0-20 %

- Ordering is observed:
 ³He+Au < d+Au < p+Au
 - \rightarrow Same as π^0 R_{xA}

φ R_{xA} in p+Al, p+Au, d+Au and ³He+Au

*The normalization uncertainty from p+p is about 9.7%.

At MB

- R_{xA} are ~1 within large uncertainties.

At 0-20 %

- Ordering is observed:
 ³He+Au < d+Au < p+Au
 - \rightarrow Same as π^0 R_{xA}

ϕ R_{xA} in p+Al, p+Au, d+Au and ³He+Au

^{*}The normalization uncertainty from p+p is about 9.7%.

At MB

- R_{xA} are ~1 within large uncertainties

At 0-20 %

- Ordering is observed:
 ³He+Au < d+Au < p+Au
 - \rightarrow Same as π^0 R_{xA}

Comparison of ϕ to π^0 R_{xA} pAl pAu dAu ³HeAu

Peripheral: ϕ to π^0 agree well.

Comparison of ϕ to π^0 R_{xA}

Central: Strangeness enhancement?

Peripheral: ϕ to π^0 agree well.

The ϕ meson R_{xA} seems to be higher than π^0 R_{xA} in central collision possibly due to strangeness enhancement. \rightarrow Cannot be concluded due to the large uncertainty.

PRC 102, 014902 (2020)

forward

p/3He-going

- CNM effects seem to be dominant.
- Small final effect at Au-going side(bkwd) while no final effect at p/ $^3\mbox{He-going side}(\mbox{fwd})$

Comparison of J/ ψ to $\psi(2S)R_{pAu}$ in p+Au

- Similar suppression is observed at p(d)-going side(fwd).
- Only $\psi(2S)$ suppress at Au-going side but not J/ψ .
- Transport-model describes the relative modification well but underpredicts the suppression for $\psi(2S)$.
 - \rightarrow The suppression of $\psi(2S)$ seems to be due to the final state effects.

J/ψ, ψ(2S) R_{AB} at RHIC and LHC

- No significant difference between PHENIX, ALICE and LHCb.
- → No energy dependence. Very similar final effect are observed.

v₂ with 3x2PC at small systems

PRC 105, 024901 (2022)

BBCS-FVTXS-CNT Acceptance combination is same as Nat. Phys

- Combination of 3 detectors (BBCS-FVTXS-CNT) are used for 2PC method to obtain v_2 .
- The 3x2PC results confirm the PHENIX Nature Physics results.
 - → Consistent with the QGP droplet picture.

v₂ with 3x2PC at small systems

PRC 105, 024901 (2022)

- Forward –Backward combination including more non flow gives larger v₂ than Backward – Backward combination (Nat. Phys).
- Rapidity selection is very important to understand the flow in small systems.
 - This explains the differences between STAR and PHENIX results.

v₃ with 3x2PC at small systems

PRC 105, 024901 (2022)

FVTXN BBCN

- v_3 is also obtained with same 3x2PC method as v_2 .
- The 3x2PC results confirm the PHENIX Nature Physics results.
 - → Consistent with the QGP droplet picture.

More detailed study for v₂ at small systems with 3x2PC

arXiv:2203.09894

- Systematic study of v₂ on small systems (p+Au, d+Au, ₃He+Au, from peripheral to central) are conducted.
- v₂ at p+p is also measured.
 - Non-zero v₂
 - v₂{BB} and v₂{BF} shows difference.
- AMPT w sm doesn't reproduce v_2 quantitatively but show the difference of $v_2\{BB\}$ and $v_2\{BF\}$.

Summary

PHENIX data in pAI, pAu, dAu and ³HeAu at $\sqrt{s_{NN}}$ =200GeV have been analyzed.

- ϕ to π^0 R_{xA}
 - Cronin effect and radial flow qualitatively explains the results.
 - Suppression is observed at central
 - Strangeness enhancement is not observed clearly so far in any small system. Need more precise study.
- J/ψ R_{AB} and ψ (2S) in dAu at forward/backward
 - Small final effect for J/ψ R_{AB} at Au-going side is seen.
 - $\psi(2S)$ suppress at Au-going side but not J/ψ .
 - RHIC and LHC agrees well.
- v_2 and v_3
 - Previous v₂ and v₃ results are confirmed
 - 3x2PC describes the possible differences with different combination of 3 detectors.
 - Rapidity selection changes v2 a lot.
 - v2 for mid and peripheral centralities are also measuered.
 - Non-zero v2 at 3x2PC methods are observed.

 $\rightarrow \pi^0$ R_{xA} and v₂ results shows the central collisions in the small system except p+p seem to create QGP-like matter at RHIC energy but not exactly same as large system.

Back Up

Comparison with model calculations

Non of these model calculations can explain all data simultaneously.

Direct photon enhancement with system size

Larger system has more enhancement at low p_T and it may be seen at pAu most central. \rightarrow relate to QGP size? Direct photon puzzle together with large v2 emissions.

→ might be hadronization photons ??

K^{*0} , ϕ and π^0 R_{AB} in pAl and 3 HeAu

 K^{*0} , ϕ and π^0 all agree well.

- Strangeness enhancement is not observed clearly.

Proton shows enhancement at 0-20% in ³He+Au.

→ Qualitatively agrees with Radial flow/Recombination

φ R_{AB} in pAl, pAu, dAu, and ³HeAu

p_{_} (GeV/c)

Dominant production process seems to change between pAl and pAu.

p_{_} (GeV/c)

p_{_} (GeV/c)

p_ (GeV/c)

More detailed study for v_2 at small systems

arXiv:2203.09894

- v2{BB} has no smooth connection around dN/d η ~10.
- AMPT-model calculations don't reproduce the qualitative trends of $v_2\{BB\}$ while it shows some agreement for the trends of $v_2\{BF\}$.

v_n with 3x2PC method

- Advantage of 2PC: Cancelling out possible detector and beam optics effects by the event-mixing technique
- Combine three 2PCs to obtain v_n due to the asymmetric collision systems

$$v_n^{\rm A} = \sqrt{\frac{C_n^{\rm AB} \times C_n^{\rm AC}}{C_n^{\rm BC}}} \quad \ C_n^{\rm AB} = \langle \cos n \Delta \phi \rangle$$

A, B, C: kinematic ranges

- Measure mid-rapidity v_n with the following rapidity combinations
 - Mid-Back(-3.9< η <-3.1)-Back(-3.0< η <-1.0) : BB
 - · Acceptance combination used in the Nature analysis
 - Mid-Back (-3.0< η <-1.0)-For (1.0< η <3.0) : BF

Borrow from Takahito Todoroki's talk at sQM.